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�-equivalent representation [5] of the newY 0-parameters as [6]

Cob =
Im(�y0

12)

!
(11)

Cbe =
1

!
Im(y0

11 + y0

12) (12)

gm = jy0

21 � y0

12j: (13)

Finally, both fc;max and fp;max are calculated by inserting the
elements values obtained from (9) to (13) into (5) and (8).

In Table I, bothfc;max and fp;max are computed withRE =
100 
 in the first two columns. The transistors are biased to
VCE = 2:5 V and IE = 3 mA and packaged with low-cost plastic-
mold types.1 For comparison, the results obtained fromS-parameters
are also summarized in the last two columnsfmax S and fosc S ,
respectively. As compared in Table I,fp;max is in relatively good
agreement withfosc S , but the estimatedfc;max needs some further
improvements. The discrepancy betweenfc;max andfmax S may be
from the fact that the small-signal equivalent circuit [as in Fig. 4(a)]
does not represent the measuredS-parameters very well near the
frequencyfmax. It is also shown in Table I that to apply this VCO
circuit at 2 GHz, transistors withfmax higher than 4 GHz are required.

IV. CONCLUSION

For the presented VCO circuit, new formulas for estimating the
maximum frequency of oscillation were developed.fp;max shows the
strong dependence on the emitter bias resistor in the region of small
RE , which greatly reduces the oscillation capability of the transistor
itself. To prevent the degradation, the voltage drop across the emitter
resistor should not be set so small. The formulas can be used as a
practical guide in choosing the active devices for the presented VCO
circuit.

The validity of the formula is verified by comparing the results
with those obtained from replacing the transistors by the measured
two-portS-parameters. The comparison shows thatfp;max computed
from the unilateral equivalent circuit is in good agreement with
that obtained from theS-parameters. For the givenRE , the fp;max

computation with an equivalent circuit is somewhat tedious compared
with the directS-parameter replacement. However, if done, one may
find that the properRE does not significantly degrade the oscillation
capability for the chosen device. In addition, it can be determined
whether or not the chosen device is adequate for the presented
structure at a given supply voltage.
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A New Approach to Nonlinear Analysis of Noise
Behavior of Synchronized Oscillators

and Analog-Frequency Dividers

J. C. Nallatamby, M. Prigent, J. C. Sarkissian,
R. Quere, and J. Obregon

Abstract—An original theory of phase noise in synchronized oscillators
is outlined through the phase-locked loop (PLL) approach. The phase-
noise spectrum obtained first by the analytical PLL theory and then by the
simulator developed in [1] have been compared with very good accuracy.
This new approach permits the best understanding of noise conversion
in synchronized devices.

I. INTRODUCTION

The purpose of this paper is to outline a new approach to nonlinear
analysis of noise behavior in potentially unstable circuits such as
synchronized oscillators. The nonlinear noise theory for synchro-
nized oscillators has been given by Schunemann [1]. Goedbloed
and Vlaardingerbroek [2] calculated the transfer properties of the
injection-locked oscillator. However, [1] and [2] give a good qual-
itative understanding of the noise behavior for the fundamentally
synchronized oscillator only. A general expression for output FM
noise calculation for subharmonic injection-locked oscillators was
formulated in terms of injected phase noise, intrinsic noise of the
free-running oscillator, and the injection locking range [3]. A com-
plementary study with previous works and an original approach to
evaluate noise in the injection-locking mechanism of an oscillator
by the help of the analog phase-locked loop (PLL) theory will be
discussed in detail. The phase-noise spectrum analytically obtained
by the PLL approach is compared with the results of the nonlinear
noise simulator developed in [4].

II. NOISE IN SYNCHRONIZED OSCILLATOR

Let us consider a Van Der Pol oscillator, shown in Fig. 1. A parallel
resonant circuit (RLC) approximates the resonance structure. The
voltage sourcee(t) represents an intrinsic noise generator where the
spectral density which varies with the lawhE(f)2i = (1e � 9)=f .
is(t) is the synchronizing current source. The active device is
modeled by two elements with the Van Der Pol third-order polynomial
characteristic

i(v) = b � v + d � v3; with b = �0:02 andd = 0:7 q(v) = q0v:

(1)

This gives us a good understanding of the oscillator noise behavior
because it contains the main nonlinearities of all transistor nonlinear
models (MESFET, bipolar, heterojuction bipolar transistor (HBT),
. . .). We are now in a position to analytically calculate the contri-
butions to the output noise spectrum due to both the intrinsic noise
sourcee(t) and to the injected current sourceis(t).

A. Effects of Injected Noise

The noise sources considered here concern only the phase noise
of the injection signal. It is possible to describe the noise of a
synchronized oscillator via the analogy of phase-locking mechanism.
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Fig. 1. Oscillator with Van Der Pol characteristic elements.R = 68 
,
L = 10:787 pH, C = 2:3475 nF, for f0 = 10 GHz.

Thus, this example will cover a theoretical study of the noise behavior
of synchronized oscillator with the help of this analogy. The results
will be compared with those provided by our simulator based on
the conversion matrix approach [4]. The differential equation for the
voltage Vl(t) is

d2Vl
dt2

+
!20
Q0

� dVl
dt

+ !20 � Vl(t) + 1

C
� di
dt

=
1

C
� dis
dt

(2)

where!0 = 1=
p
L � C is the resonant frequency andQ0 is the quality

factor of the parallel RLC. Due to the highQ0, the output voltage
Vl(t) can be expressed as a sine-wave signal and the generatoris(t)
can be written as

Vl(t) =Re(V̂l(t) � ej�(!�t+'(t)))

and

is(t) =Re(Îs(t) � ej�(!�t+ (t))) (3)

where V̂l(t) describes the amplitude variation as a function of time
and'(t) is the phase variation.

Substituting (3) into (2), we obtain

d2V̂l
dt2

+
!0
Q0

+
1

C
� b+

9

4
� d � V̂ 2

l � dV̂l
dt

+ !20 � ! +
d'

dt

2

� V̂l

= �Is � !
C

� sin( � ') (4)

d2'

dt2
+

2

V̂l
� ! +

d'

dt
� dV̂l
dt

+ ! +
d'

dt

� !0
Q0

�+ 1

C
� b+

3

4
� d � V̂ 2

l

=
Is

V̂l
� !
C

� cos( � '): (5)

By taking into account the free and synchronized regimes of the
oscillator and the assumption ofd'=dt� !, (4) and (5) lead to

d'

dt
� Is

2 � C � V̂l
� sin( � ') = �!0 (6)

where�!0 = !0 � ! is the offset frequency from free-running
oscillation frequency. This equation is called an Adler’s phase
equation [4]. For the steady state (d'=dt = 0) where the phase
is locked, (6) becomes

Is � sin('0 �  0) = 2 � C � V̂l ��!0 (7)

and (5) becomes

!0
Q0

+
1

C
� b+

3

4
� d � V̂ 2

l =
Is

V̂l
� !
C

� cos( 0 � '0): (8)

The steady state of this synchronized regime, defined byV̂l(t) =
V0, '(t) = '0,  (t) =  0, and �! = �!0 is perturbated in
two different ways. First, there exists an external perturbation of
the  0 phase of the synchronizing oscillator named� (t). Firstly,

note that the amplitude perturbation of this synchronizing source is
supposedly negligible. Secondly, the oscillator is perturbated by an
internal noise source, which can be represented by an equivalent
frequency deviation�!(t). The phase'(t) and amplitudeV̂l(t) of
the synchronized oscillator become, respectively,'0 + �'(t) and
V0 + �V (t). By taking into account these perturbations and (7) and
(8), Adler’s equation can be written as

�V

V0
=

�' � � 

tg( 0 � '0)
+

d�'

dt
� �!

�!0
: (9)

In the same way, the perturbation of (6) with the assumption
d�'=dt � ! gives

d2�'

dt2
� V0 + 2 � ! � d�V

dt
+
�V

V0
� !

� !0
Q0

+
1

C
b+

9

4
� d � V 2

0 � V0

= � Is � !
C

� sin( 0 � '0) � (� � �'): (10)

Using (9) and its time derivative with the assumption that�!0 �
2 � !, (10) may be written as

2

�

d2�'

dt2
+

2 ��!0
� � tg( 0 � '0)

+ 1
d�'

dt

+
Is ��!0
� � V0 � C sin('0 �  0) +

�!0
tg('0 �  0)

�'

=
2 ��!0

� � tg( 0 � '0)

d� 

dt

+
Is ��!0
� � V0 � C sin('0 �  0) +

�!0
tg('0 �  0)

� 

+
2

�
� d�!
dt

+ �! (11)

where� = !0=Q0 + 1=C � (b + 9
4
� d � V 2

0 ).
This equation represents the dynamic behavior of the circuit. If

there exists a phase modulation� of the synchronizing oscillator, by
resolving (10) it is possible to express the output phase modulation
�'. Equation (11) appears to be a linear second-order differential
equation, which is analogous to the dynamic equation of an analog
PLL, shown in Fig. 2. This equation relates the output phase�' to
the input phase� and the internal perturbation�! as follows [5]:

�1 � d
2�'

dt2
+ (1 +K � �2) � d�'

dt
+K � �'

= K � �2 � d� 
dt

+K � � + �1 � d�!
dt

+ �! (12)

whereK is the open-loop gain of the PLL, and�1 and �2 are the
two time constants of the phase–lag filter of the loop, which has a
transfer function that reads as

F (j � 
) = 1 + j � 
 � �2
1 + j � 
 � �1 ; with �1 > �2: (13)

By comparing (11) and (12), the parameters(K; �1; �2) of the PLL
can be related to those of the Van Der Pol synchronized oscillator by

�1 =
2

�

K =
Is ��!0 � sin('0 �  0)

� � V0 � C +
�!0

tg('0 �  0)

�2 =
2 ��!0

� � tg( 0 � '0) �K : (14)

Resolving (12) in the frequency domain, it is then possible to
express the output phase-noise spectral densityS�(
) = hj�'j2i as a
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Fig. 2. Block diagram of an equivalent PLL.

Fig. 3. jHN (j � 
)j and j1�HN (j � 
)j versus offset frequency.

function of the input phase-noise spectral density of the synchronizing
oscillator S	(
) = hj� j2i and the internal phase-noise spectral
density, which represents the phase-noise spectral density of the free-
running oscillatorS� (
) = hj�!j2i=4 � �2 � 
2 � K2

vco, with the
following relation:

S�(
) = jH(j � 
)j2 � S	(
) + j1�H(j � 
)j2 � S� (
) (15)

whereH(j �
) = [K �F (j �
)]=[j �
+K �F (j �
)] is the system
transfer function of the PLL [6]. It should be noted that the parameters
of (12), namelyK, �1, and�2, depend in a nonlinear fashion on the
oscillator parameters and detuning frequency�! = !0�!. Thus, it
will be necessary to calculate these parameters for each steady state in
the locking bandwith. The magnitude of the system transfer function
H(j � 
) can be expressed in the normalized form

jHN (!n)j
2 =

1 + 2 � � �
!0
K

2

� !2n

(1� !2n)2 + 4 � �2 � !2n
;

with normalized pulsation!n =



!0
(16)

where� is the damping factor. The expression of!0 and � of the
PLL are given by

!20 =
K

�1

2 � � � !0 =
1 +K � �2

�1
: (17)

The nonlinear steady-state analysis of the synchronized oscillator
is carried out by means of a modified harmonic-balance software
[7] and has permitted the determination of the frequency-locking
range between 2.495 875–2.496 15 GHz and the oscillator parameters
�!0; '0; V0. Using (14) and (17), the damping factor and natural
frequencyf0 = !0=2� can be calculated. The magnitudes of the
system transfer functionjHN (j � 
)j and the voltage-controlled

Fig. 4. Comparison between simulated and calculated output phase-noise
spectrum of the synchronized oscillator versus locking bandwidth for the four
frequencies offset from carrier 1, 10, and 100 kHz, and 1 MHz.

oscillator (VCO) phase error transfer functionj1 � HN(j � 
)j [6]
are plotted in Fig. 3, as a function of the distance from the carrier
for different values of the damping factor and natural frequency. As
expected, these transfer functions correspond to a low- and high-
pass filter, respectively, and the curves have a peak at
 = !0;
the amplitude increases with decreasing�. With the help of (15),
one can deduce the contributions to the output phase-noise spectrum
from the intrinsic and injected noise. This shows that the near-carrier
phase-noise spectrum is mainly due to the injected noise by the
contribution of the equivalent low-pass filterjHN (j � 
)j and the
far-carrier phase-noise spectrum is mainly due to the intrinsic noise
by the contribution of the equivalent high-pass filterj1�HN(j �
)j.
The rigorous nonlinear noise analysis [4] can be used to calculate the
output noise spectrum for the whole locking range. Fig. 4 shows the
output phase-noise spectrum obtained, by the application of the PLL
formula (15) and by means of the nonlinear simulator, as a function
of the locking band for the four offset frequencies 1 kHz, 10 kHz,
100 kHz, and 1 MHz. We note very good agreement between the
simulated and analytical results.

III. CONCLUSION

This paper discusses in detail an original approach to predict the
noise behavior of a synchronized oscillator based on PLL theory.
Based on the works of Adler, we have established a perturbation
equation, which permitted us to carry out an analytical expression
of a phase-noise spectrum of a free and synchronized oscillator. It
provides a good understanding and mathematical explanations of
the noise behavior in the whole locking bandwidth. This circuit
has permitted us to validate our simulator based on frequency-
conversion formalism. This circuit could serve as a benchmark
in testing commercial nonlinear noise simulators to evaluate their
capabilities.
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Static Analysis of Arbitrarily Shaped
Conducting and Dielectric Structures

Sadasiva M. Rao and Tapan K. Sarkar

Abstract—In this paper, a simple and efficient numerical procedure
is presented to compute the charge distribution and capacitance of
conducting bodies in the presence of dielectric structures of arbitrary
shape and finite size. The method presented is robust and provides
accurate results for both low as well as high dielectric-constant materials
as supported by numerical examples.

Index Terms—Capacitance, dielectric bodies, electrostatic analysis, mo-
ment methods.

I. INTRODUCTION

In [1], Rao et al. described the evaluation of static charge distri-
bution and capacitance matrices for conductors of finite size in the
presence of dielectric media. Recently, this formulation was also in-
corporated into a fast multipole method to generate a computationally
fast algorithm [2], [3]. Although the work presented in [1] and [2]
is general, it is computationally expensive. In [1], the total charge is
computed everywhere by solving a set of integral equations, the free
charge on conductors is then obtained by solving yet another integral
equation. Thus, the free-charge extraction is a two-step procedure and,
computationally, this implies storing and inverting large matrices.
Further, the method presented in [1] may be inaccurate, as shown in
[3], for the case of high-dielectric materials.

In this paper, we present a simple and efficient procedure to
obtain the free charge on the conductors in the presence of dielectric
materials which may have low as well as large�r. The main
advantage of this technique is the elimination of the expensive two-
step procedure and calculating the free charge in a straightforward
manner.

II. I NTEGRAL-EQUATION FORMULATION

Consider a system of finite length, and finite- or zero-thickness
conductors situated in the presence of dielectric bodies, as shown
in Fig. 1. Let Nc and Nd represent the total number of disjoint
conductors and dielectric bodies, respectively, which are present in
the system configuration. The whole system is immersed in free space
and could be placed on a ground plane of either finite or infinite size.
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Fig. 1. Conducting and dielectric structures in the homogeneous medium.

(a) (b)

(c)

Fig. 2. Numerical modeling procedure.

In this formulation, the central idea is that we treat each conductor
and each dielectric body as if it is immersed in free space. Thus, we
consider a combination of the conductor–dielectric interface as two
bodies separated by zero distance. In this way, we treat all dielectric
bodies as closed surfaces. If the conducting and dielectric bodies are
separated by a finite distance, as shown in Fig. 2(a), the treatment is
obvious. However, if the conductor and dielectric bodies are joined
together, as shown in Fig. 2(b), we treat them as two bodies with
a layer of zero-thickness free space separating them, as shown in
Fig. 2(c).

In applying the equivalent charge formulation, we first replace
each conducting and dielectric surface by surface charges�c and�d,
respectively. Using the mathematical procedures described in [1], we
derive a set of integral equations, given by

N +N

i=1

1

4��0 S

�(rrr0)

jrrr � rrr0j
ds

0 = Vj(rrr);

rrr 2 Sj ; j = 1; 2; � � � ; Nc (1)

and

2�(1+�rj)�(rrr)+(1��rj)

N +N

i=1 S

�(rrr0)(rrr�rrr0) � aaanj
jrrr�rrr0j3

ds
0 = 0;

rrr 2 Sj ; j = Nc + 1; Nc + 2; � � � ; Nc +Nd (2)

whereVj is the potential on thejth conductor,�rj andaaanj are the
dielectric constant and unit outward normal of thejth dielectric body,
and� is the unknown charge density equal to�c or �d. Note thataaanj
may be uniquely defined since the dielectric body is a closed body.
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